INDIAN STATISTICAL INSTITUTE BANGALORE CENTRE B. MATH III YEAR, II SEMESTER(2003-2004) SEMESTRAL EXAMINATION ANALYSIS IV

Max. Marks: 100 Duration: 3hrs

1. Assuming that a complete metric space cannot be written as a countable union of nowhere dense sets, show that the intersection of a sequence of dense open sets in such a space in dense. [15]

2. Prove that the set Q of rational numbers is not a G_{δ} in R. [A G_{δ} is a countable intersection of open sets] [10]

3. Prove that any right continuous function $f: R \to R$ is Borel measurable. [15]

4. Lat $\{f_n\}$ be a sequence of real measurable functions on a measure space $(\Omega, \mathcal{F}, \mu)$ such that $\sup_{n} \int e^{f_n} d\mu < \infty$ and $f_n \to f$ a.e. If $\mu(\Omega) < \infty$ show that $\int_{0}^{\infty} |f_n - f| d\mu \to 0$. [20]

a) Give an example of increasing sequence of measurable functions $\{f_n\}$ converging a.e. to f such that

 $\int \lim f_n d\mu \neq \lim \int f_n d\mu.$

b) Give an example of a sequence of measurable functions $\{f_n\}$ such that $\int |f_n| d\mu < \infty$ for all n but

 $\int \liminf f_n d\mu > \liminf \int f_n d\mu. \quad [5+5]$

6. State and prove Jensen's inequality. [10]

7. If μ and ν are finite positive measures on (Ω, \mathcal{F}) such that $\max(\mu(E), \nu(E))$ is a measure then show that either $\mu(E) \leq \nu(E)$ for all $E \in \mathcal{F}$ or $\nu(E) \leq \mu(E)$ for all $E \in \mathcal{F}$. [20]

8. Let f be a measurable function on a product space such that for each x, f(x,y) = 0 for almost all y. Show that there exists a null set A such that if $y \notin A$ then f(x,y) = 0 for almost all x. [10]